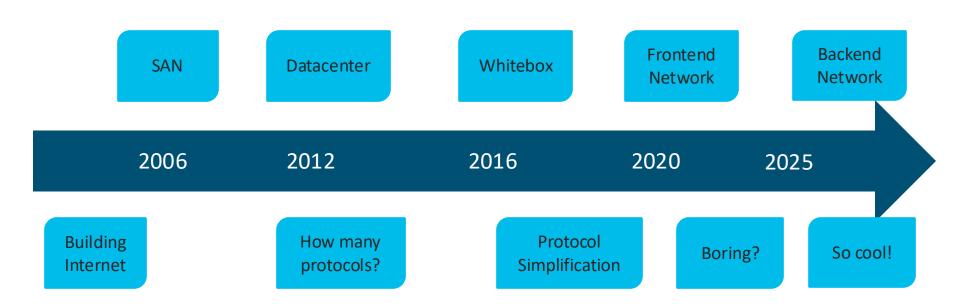
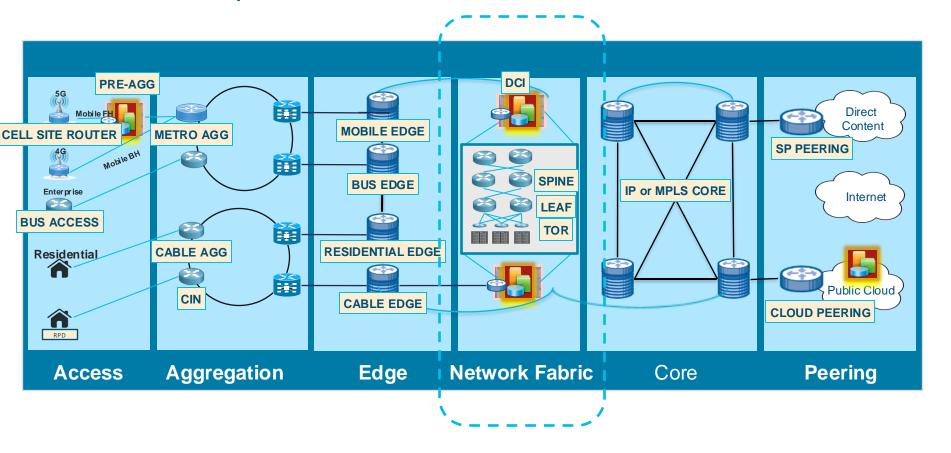
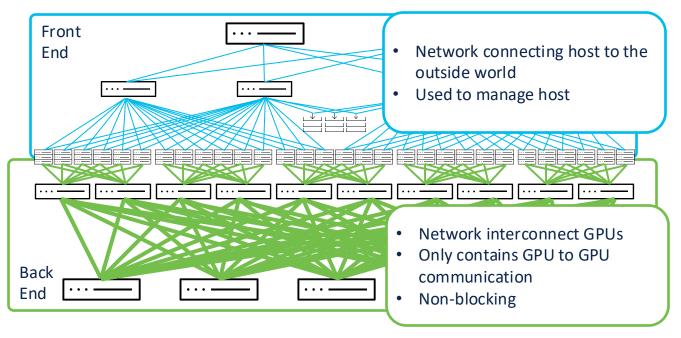
cisco

Evolution of Networks


Patrice Brissette

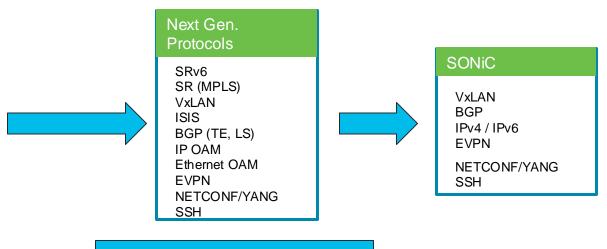
Distinguished Engineer


Powered by


Evolution of Networks

Network Representation

Front-End / Back-End Network


Scale-up: 4 to 8 GPU per server

Scale-out: servers are connected via proprietary protocol

Market is looking at options

Drastic Network Protocols Reduction

Bag of existing Protocols Ethernet MP-BGP 802.1Q, LDP 802.1ad **VxLAN** IPv4 IP OAM PPPoE MPLS OAM IPv6 Ethernet OAM **MPLS** STP L2TP G.8032 PWE3 **RADIUS** ISIS **SNMP OSPF** Syslog RSVP-TE Netflow **LACP** SSH CLI/XML MC-LACP HSRP/VRRP

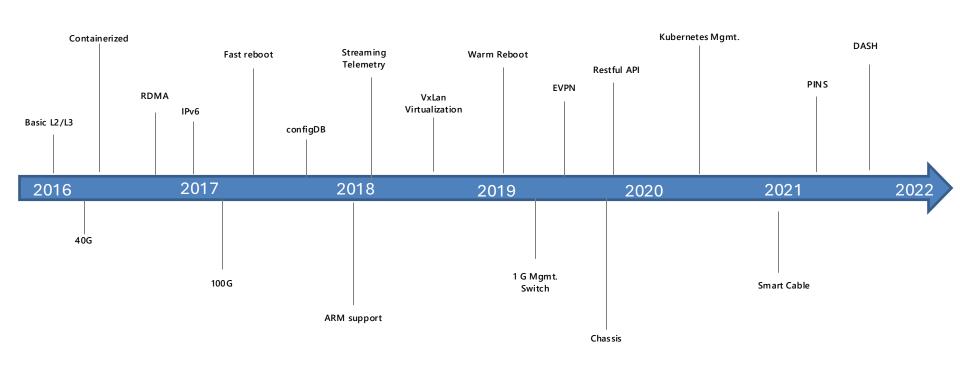
Key enabler for

Reducing operations complexity

- Simpler automation
- Simpler to repair
- Simpler integration
- Foundation for service Orchestration

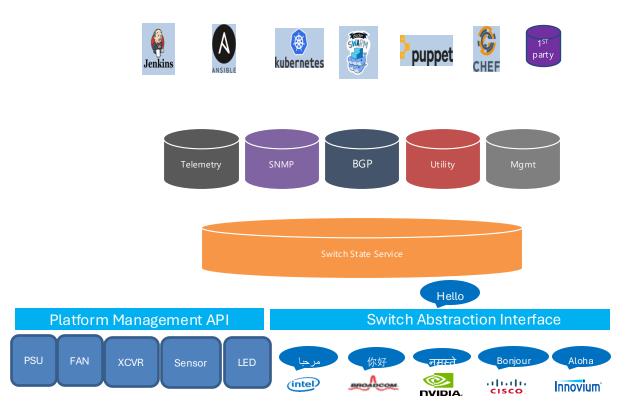
Requirements in 2020 Networks

Legacy Features	Support developed protocols since 1998 (>40)	
Convergence	50ms switch time upon single failure	
Optimal Forwarding	Traffic engineering, proper bandwidth usage	
Low Latency	5G requirements	
ECMP	Entropy based on 5-tuple hash	
Programmability	gRPC, gNMI, Yang, controller	
Virtualization	Appliance running on server; disaggregation	


Requirements in 2025 Networks

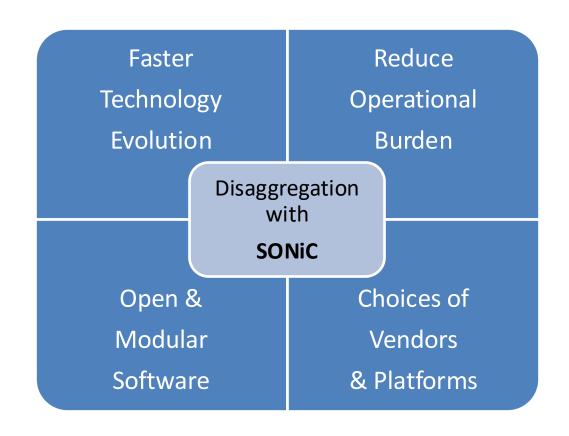
Non-Blocking	Throughput is critical for training purpose	
Lossless	Congestion management	

Bandwidth	Current networks to be enhanced (70% \rightarrow 100%)	
Low Latency	Inference network should be optimized for performance	
Enhanced-ECMP	Elephant flow with low-entropy	
Visibility	High-frequency Telemetry for network congestion control	



The SONiC's Journey

SONiC: Software for Open Networking in the Cloud


Rich management capabilities

Container for serviceability and portability

Application State Decoupling

Platform/ASIC Independence

Goals of SONiC

SONiC/SAI Community and Partners

Merchant Silicon

Switch Platform

Meta

Celestica C

ALPHA STEEL

Adoption

DiDi 🗇

System/Service

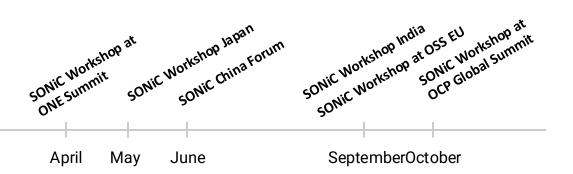
XCLOUD

SONiC - Year End Review

380K+

social media reach

27


SONiC members

2024

4K active contributors

6 2024 in-person events

Workgroups Highlights

Al Workgroup

- Fabric Workstream
- Topology (led by Nvidia, Dell, BRCM, Marvell)
- Routing (led by Nvidia, Dell, BRCM)
- Traffic Management Workstream
- Congestion (led by Nvidia)
- PFC (led by BRCM)
- Telemetry Workstream

(All workstreams finished first round investigation)

Smart Switch Workgroup

- Platform Architecture HLD for SmartSwitch completed
- DPU database design completed
- Midplane/PCIE architecture completed
- IP address assignment design completion
- •gNMI design from NPU to DPU
- DPU High-availability design
- NPU-DPU Health probing design using BFD

OTN Workgroup

- OTN services (OTSS, Syncd-OT, OTAI) HLDs have been reviewed with PR to SONiC.
- OTN virtual platform and KVM device have been supported in SONiC-OTN branch.
- OTN enhancement on sonic-mgmt-common HLD has been reviewed with PR to SONiC.

Routing Workgroup

- Phoenix Wing initiated to integrate SRv6 features into SONiC platforms, enhancing compatibility and reducing total cost of ownership.
- Enhanced sonic-mgmt vsonic test infra from single box testing to multi-node topology testing.
- The phoenix wing platform test plan PR and the test infra enhancement code PR are raised.
- Spytest test plan is working in progress between Alibaba team and Cisco team.

Focus and Looking Forward

Security

- Vulnerability Report and Collaboration
- Al Empowered Security (Data Analyze, Threat Detection, Auto Repsonse etc)
- Secure Boot Enhancement
- Security Auditing & Insight
- Supply Chain Security

Ethernet for Al

- Optimized Topology
- Traffic management (Routing, Load Balance, Packet Spray etc)
- Congestion control
- Advanced telemetry
- Optics
- Liquid Cooling

Smart Switch

- Floating NIC
- Private Link
- Flow simulation
- Security Offloading
- Computation Offloading

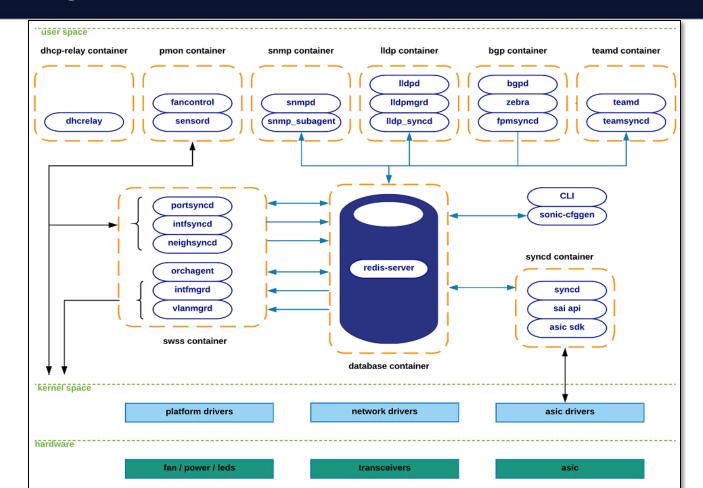
Enterprise & Edge

- Power Over Ethernet (PoE)
- Multiple Spanning Tree Protocol (MSTP)

Referenced Documents

#	Document Title	Document Identifier & Link
1	SONiC official wiki	https://github.com/sonic-net/SONiC/wiki
2	SONiC architecture	https://github.com/sonic-net/SONiC/wiki/Architecture
3	SAI API	https://github.com/opencomputeproject/SAI
4	Redis documentation	https://redis.io/documentation
5	Click module	http://click.pocoo.org/5/
6	JSON introduction	https://www.json.org/
7	SONiC supported platforms	https://github.com/sonic-net/SONiC/wiki/Supported-Devices-and-Platforms
8	SONiC Software Architecture 2018 Workshop	<u>Videos</u> <u>Slides</u>

SONIC System Architecture


SONiC system's architecture comprises of various modules that interact among each other through a centralized and scalable infrastructure. This infrastructure relies on the use of a redis-database engine: a key-value database to provide a language independent interface, a method for data persistence, replication and multi-process communication among all SONiC subsystems.

By relying on the publisher/subscriber messaging paradigm offered by the redis-engine infrastructure, applications can subscribe only to the data-views that they require, and avoid implementation details that are irrelevant to their functionality.

SONIC places each module in independent docker containers to keep high cohesion among semantically-affine components, while reducing coupling between disjointed ones. Each of these components are written to be entirely independent of the platform-specific details required to interact with lower-layer abstractions.

Documents

SONiC Overview

Search docs

Process & Workflow

Heleases & Fackaging

Library Facilities (libfrr)

Fuzzing

Tracing

Testing

MGMTD Development

BGPD

FPM

Northbound gRPC

USFFI

Zebra

DATUE

/ FRRouting Developer's Guide

C Edit on GitHub

FRRouting Developer's Guide

- Process & Workflow
 - Mailing Lists
 - Development & Release Cycle
 - · Accords: non-code community consensus
 - Submitting Patches and Enhancements
 - Programming Languages, Tools and Libraries
 - Code Reviews
 - Coding Practices & Style
 - Documentation
- Checkpatch
 - Options
 - Message Levels
- Type Descriptions
- Building FRR
 - Static Linking
- Alpine Linux 3.7+
- Arch Linux
- CentOS 6
- CentOS 7
- o CentOS 8
- o Debian 8
- Debian 9
- o Debian 12
- Fedora 24+
- FreeBSD 9
- o FreeBSD 10
- FreeBSD 11
- FreeBSD 13
- FreeBSD 14

FRRouting

Useful Links

https://github.com/sonic-net/

https://github.com/sonic-net/SONiC/wiki

https://github.com/sonic-net/SONiC/wiki/Architecture

https://github.com/opencomputeproject/SAI

https://frrouting.org/

https://docs.frrouting.org/projects/dev-guide/en/latest/index.html#

Overview

Started in May 2023.

Charter:

Gather contributors from both FRR community and SONiC community to improve white box support for a router based on deployments / use cases.

Chair: Eddie Ruan (Alibaba)
Co-chairs: Patrice Brissette (Cisco

Patrice Brissette (Cisco) Syed Hasan Raza Naqvi (Broadcom)

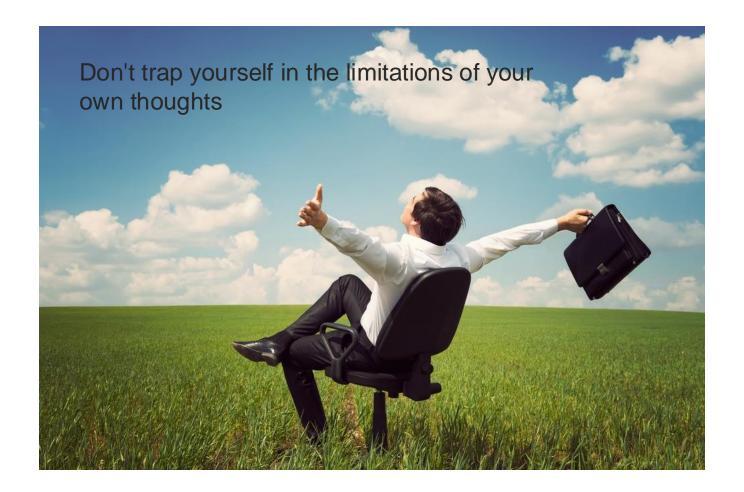
Rita Hui (Microsoft)

Webpage: https://lists.sonicfoundation.dev/g/sonic-wg-routing

Mailing List: sonic-wg-routing@lists.sonicfoundation.dev

Subscribe: sonic-wg-routing+subscribe@lists.sonicfoundation.dev

Members: 300+


Weekly Meeting:

Every Wed, 11am – 12pm EST Every Thu, 8.30pm – 9.30pm EST

Workflow

How to reach me?

pbrisset@cisco.com

