
Comp1405 Final
Review Session

Valid Variable Names
only letters, numbers & underscores
camelCase and snake_case

Variable types
Integer
Floating point
Boolean
String

Variables

Algebra Operators
Operator Function Example (If x = 10, and y = 8)

+ Addition x+y = 18

- Subtraction x-y = 2

/ Float Division x/y = 1.25

// Integer Division x//y = 1

% Modulus x%y = 2

* Multiplication x*y = 80

** Exponent x**y=100,000,000

Conditional Operators
Operator Function Example (If x = 6, and y = 7)

== Equal
x == y returns false (6 does

not equal 7)

!= Not Equal
x != y returns true (6 does

not equal 7)

> Greater Than x>y returns false

< Lesser Than x<y returns true

>= Greater or Equal To x>=y returns false

<= Lesser or Equal To x<=y returns true

Logic Operators
Operator Function

Example (If x = true, and y =
false)

and
(conjunction)

Only returns ‘true’ if both
conditions are ‘true’

x and y -> false

or
(disjunction)

Returns ‘true’ when one of the
conditions is ‘true’

x or y -> true

not
(negation)

Returns the opposite of the
current value

not x -> false
not y -> true

Logic Gates

AND OR NOT

ඞ

Lists
Collection - that may contain the same
data type

 my_list = [1, ‘a’, ‘b’, True, 2, 3, 5, 8]

Accessing elements - each value has it’s
unique index, starting at 0

 my_list[0] -> would return 1

List Methods
my_list.append(x) - adds the element to the back of
the list
my_list.insert(i, x) - adds the elements at position i
my_list.remove(x) - removes the given element
my_list.pop(i) - removes the item located at position i
and returns it
my_list.pop() - removes the item at the end of the list
my_list.clear() - removes all of the elements from the
list

Strings
Collection Data Type

Strings are character sequences that
must be written in quotation marks, that
can be treated as linear (iterable)
collections of characters.
Strings are lists!
Example: “Hello, World!”

String Methods
len(str) returns the length of the string.
Similar to lists, characters can be accessed using
their index value and spliced using the splicing
operator.
str.split(sep) splits a string into a list at the specified
separator (whitespace by default)
str.lower()/str.upper() convert the string to
lowercase and uppercase characters respectively

List & String Operators
Concatenation
greeting = "Hello" + " " + "World!"
print(greeting) # Output: "Hello World!"

Repetition
line = "ha" * 3
print(line) # Output: "hahaha"

Membership
print("cat" in "concatenation") # Output: True

Dictionaries
A dictionary is an associative collection of items, i.e. it is
a collection of keys with values associated with them.

Components of a dictionary:
Key - A unique, immutable identifier with a value
associated with it.
Value - What is stored in association with a key.

Dictionary Methods
my_dictionary.keys() - returns a list of the dictionary’s
keys
my_dictionary.values() - returns a list of the dictionary’s
values
my_dictionary.items() - returns a list containing a tuple
for each key-value pair
my_dictionary.get(key, default_value (optional)) -
returns the value associated with the key, or the
default_value if the key does not exist (useful to avoid a
KeyError)
my_dictionary.pop(key) - removes the element with the
specified key from the dictionary and returns its value

Dictionary Operators
Adding an element - my_dictionary[key] = value (if the key
already exists, the value is rewritten.
Accessing a value - value = my_dictionary[key] (if the key
does not exist, a KeyError is raised)
Deleting an element- del my_dictionary[key] (if the key
does not exist, a KeyError is raised)
Check if a key is present - key in my_dictionary, returns
True if the key is present in the dictionary

Loops
Loops are used when algorithms need to repeat a
certain block of code.

There must always be a condition that is tested at
every iteration of the loop, and one terminating
control flow path (so that the loop ends eventually)

Loops (cont.)
Components of a loop

Condition - source of the boolean value which
determines if loop will continue
Body - block of code that is to be repeatedly
executed
Initialization - phase where initial values are
assigned to crucial variables for the loop
Termination - the loop terminates after the final
execution of the body

Functions
Self-contained algorithms which execute a specific task.

Parts of a function:
‘def’ statement - used to define a function. Followed by the
function name, a set of round brackets ‘()’, and (if
applicable), a comma-separated list of parameters.
Parameters - variables used as input values.
Return value - The value that a function call evaluates to.

Set using the ‘return’ keyword (program also moves
out of the function upon a return statement).
If no return value is specified, function returns None
(None is a type representing the absence of a value).

Functions - default values
Given the following line:
def addThreeNumbers(a, b, c = 10)

a and b are mandatory - no default value
c is optional, as a a default value has been specified

If it is not provided, the function will use 10
Order of parameters matters – mandatory
parameters must come before the optional ones

File I/O
Python interacting with files stored on your computer.

The 3 most common modes:
“r”: Opens the file for reading, from the top.
“w”: Creates the file if it does not exist,

If it already exists, it will be overwritten.
“a”: Creates the file if it does not exist.

If it already exists, it adds new data to the
bottom of the file.

File I/O (cont.)
f = open(filename, mode) - Opening a file
f.readlines() - Reads entire file and returns a list,
each element being a line (string)
f.readline() - Reads one line (string), including the
newline (“\n”)

Can loop, calling at every interation, avoiding
the use of a list

while line != “” or for line in file
Returns an empty string when it reaches the end
of the file.

Recursion
A recursive function is a function that calls itself. This
can be done to improve the program’s runtime.

Steps needed to solve a recursive problem:
Simplify the given argument
Make the recursive call
Do the operations required at each step to reach a
solution

Make sure that your recursive function - has a way to
end, otherwise.. StackOverflow error

Sorting
Selection sort - Finding smallest elements, and
putting them at their respective positions
Bubble sort - Pass through list, comparing the
elements that are next to each other and swapping
them if they are out of order, repeating until there
are no longer any swaps made
Merge sort - Separate the list until it’s in units of
two, then sort those units, combining and sorting
them with another unit of the same size, repeating
the process until the list is sorted

Searching
Must be done on a sorted list! ☆

Linear Search - Searching all of the elements in
order, until you find the element that you are
looking for
Binary Search - Start at the middle - determine
which half must contain the value that you are
looking for, continue until you find the target value

Object Oriented
Programming (OOP)
Object-Oriented Design

The practice of procedural programming is
concerned with the development of procedures
The practice of object-oriented programming is
concerned with the development of objects
An object is an entity (i.e., some ‘thing’) that includes
both data and functionality components
Example: A car -- Color, brand, wheels, etc.

Object Oriented
Programming (OOP)
Classes and Objects

Classes
Define a data type, design the structure of
objects, defines attributes and methods

Objects
Instances of a class, hold specific values
Separate scope per object

