
Git Workshop

CCSS - Shirley Zhan

Does your work look like this?

Use Git
 - Git is a distributed version control

system that tracks changes to files over
time

 - Git stores the entire history of a project,

enabling easy rollback to previous
states(no need to scramble and
delete/edit code)

 - It facilitates branching and merging,

allowing developers to work on features
independently and merge changes back
into the main codebase

Crucial for collaboration in a team

This sounds so complicated…

First, some setup…
Install git, to check if it’s installed, run git –version

Now set up your name and email(identifiers)

First, some setup…
Now let’s set up Github, got to Github and make an account

Let’s create our first project
First let’s use mkdir to create a directory

First let’s use mkdir to create a directory, then run git init to create a git repository. This step is crucial in
running all git commands

Let’s make a change
First by making a new txt file. Use the command echo to create a file and write to it

Make your first commit!
Use git add <file_name> to stage your files

Staging is like setting up your code to be committed. It’s like the step in your mail sending where you put the
letter in the envelope.

Make your first commit!
Now use git commit -m ‘message’ to commit the change. You have a write a message so make sure it’s a
cool one!

Committing is officially sending out the mail. It’s saving the current progress that you’ve made. You would
usually write a message because you want other people to know what your progress is.

Look at what happened…
Use git log to see what happened(or use an extension)

Now let’s make a change to a file
Add a line to your text file and save it. Use git diff to see what changes were made

Let’s make another change
Use git add to stage your changed file. Use git status to see what your current changes look like

Let’s try unstaging our changes
Use git reset HEAD <file_name> to remove files from the staging area.

Now let’s commit that change
Use git commit to commit the change.

Not how the message this time is different from when we initially committed. This is because we modified a
file instead of creating a new one.

Let’s add our project to Github
Navigate to github and create a new repo

Let’s add our project to Github
Copy the link in the page and run the commands to add your project to github. Use git remote to access
github and git push to add your local changes to github

Let’s push a change to github!
Use git push origin <branch_name> to push your commits

Pushing allows our local commits to be synced with the remote. You do not need to push after every commit.
Push as often as you need

Let’s make a new branch
We currently just have main

In large projects, usually there are multiple branches for each feature which are separate from each other

Let’s make a new branch
Use git checkout -b <branch_name> to create a new branch and switch to it

Let’s make some changes to new branch
For simplicity’s sake, let’s just create a bunch of text files. Use a bat(multiple commands) file to make life
easier for yourselves :))

Let’s make some changes to new branch
Run the bat file and remove it so it’s not in our commit

Let’s make some changes to new branch
Let’s stage the changes

Git Stash
If you want to switch branches but don’t want to commit yet, stash those changes and pop them later back.
If you had switched without stashing or committing, you would have lost the changes you made.

Merging
Let’s work in the master branch and create another file(note that it’s the same as a file in another branch…)

Merging
Use git stash pop and get back all the changes we’ve made

Merging
Let’s say we’re done with the feature in the feature branch and we want to merge. Switch to the branch
you want to merge into and type git merge <feature_branch_name_you_want_to_merge>

Merge Conflicts
Merge conflicts happen when the same file is worked on by 2 different branches. You usually need to work
with the other person working on the other branch to resolve it.

Pulling Changes
Sometimes changes are pushed to the remote and your branch might not have it yet. Let’s simulate this by
creating a file in github directly

Pulling Changes
Do git pull to get those changes.

Let’s clone your first project!
Usually at work, you would need to clone a project and get a local
copy of it. The command you would use is git clone

New Branches
Most, if not all projects on github don’t let you directly commit to the main branch. You need to create a
new branch and create a pull request to merge with the main branch.

Challenge!
The demo.py is a simple calculator. Create a new branch and add some changes to it. You can add a new
feature or just add a text file.

Pull Request
When you’re ready, use the command git push --set-upstream origin <branch_name> to push your
branch. Make a pull request so the owner can see it and approve it

