COMP 2804 Study Session

Catch up on everything you need to succeed on your 2804 final.
Dec 8th, 6:00 PM - 8:00 PM EST, Seminar Room (HP 5345)

COMP 2804 Study Session

By: Nguyen-Hanh Nong

What is this for?

Simultaneous collaborative review session/tips and tricks for the exam

Problem:

Final Examination

Topics in the Course

Counting

Probability

Recursion

- Law of Total Probability and Bayes Theorem
- Infinite Probability Spaces

Random Variables and Expectation

- Pigeonhole Principle

Review of Winter 2017 Exam:

Tips and Tricks (probably obvious but worth reiterating)

Tip \#1: Computational Real Number Questions First

- There's probably going to be questions on the exam that do not involve actual numbers (involve terms like n and i)
- Tendency for those questions to be more theoretical (asking you to understand applying certain theories and/or rule)
- Computational questions should generally be done first, if you're more comfortable with them

Example of non-computational question (Winter 2019 Exam)

5. Let $m \geq 2$ and $n \geq 2$ be integers. Why does the identity

$$
\binom{m+n}{2}=\binom{m}{2}+\binom{n}{2}+m n
$$

hold?
\square Because both sides count the number of ways m men and n women can be arranged on a line, such that not two men are standing next to each other.
Because both sides count the number of ordered pairs in a set of size $m+n$.
Because both sides count the number of 2-element subsets of a set of size $m+n$.
None of the above.

Example of computational question (Winter 2019 Exam)

4. Consider the sets $A=\{1,2, \ldots, 10\}$ and $B=\{1,2, \ldots, 14\}$. Let $S=\{(x, y): x \in A, y \in B\}$. An element (x, y) of S is awesome, if x is even or y is even. What is the number of awesome elements in S ?

Tip \#2: Pattern Match as much as possible

- Pattern Matching: "act of checking a given sequence of tokens for the presence of the constituents of some pattern."
- Basically, copying and pasting techniques for questions that look similar
- Usually works good (since the exams don't switch up between years that much), but don't depend on it for you to pass -_(ツ)_/
- Best topics/types of questions to 1-1 pattern match: Recursion/recurrence type questions and counting/bitstring questions
- Works especially well when you don't really know what you're doing (possibly - maybe - probably might occur once on the exam)

Example of optimal pattern matching

Question o Fall 2018 Fxam

9. Consider bitstrings that do not contain 110. Let S_{n} be the number of such strings having length n. Which of the following is true for any $n \geq 4$?

\square	
\square	$S_{n}=S_{n-1}+S_{n-2}+1$
$S_{n}=S_{n-1}+S_{n-2}+2^{n-2}$	
$S_{n}=S_{n-1}+S_{n-2}+2^{n-3}$	
$S_{n}=S_{n-1}+S_{n-2}+S_{n-3}$	

Question 14 (a). A string over the alphabet $\{a, b, c\}$ is called super if it does not contain $a b c, a b a$, or $a a$. For $n \geq 1$, let A_{n} denote the number of super strings of length n. Which of the following is true for any $n \geq 4$?

$A_{n}=A_{n-1}+A_{n-2}+A_{n-3}$
$\square A_{n}=2 A_{n-1}+A_{n-2}+A_{n-3}$
$\square A_{n}=2 A_{n-1}+2 A_{n-2}+A_{n-3}$
$A_{n}=2 A_{n-1}+2 A_{n-2}+2 A_{n-3}$
None of the other answers is correct

Question 14, Fall Winter 2022 Midterm (Version A)

Tip \#3: Test on Small Examples

- Technique that is ideal for solving non-computational questions and recursive/probability problems
- Downsides: Takes quite a bit of time, which you might not have on the exam
- Ideal: Test only up to like $n>=5$ or 6 , any more than that and usually your gonna have too many test cases (remember that you probably won't have calculators)
- Most of the time, you'll generally not solve the problem right away, but remove 1 or 2 of the possible answers from contention

Example of small-examples question (Winter 2014 Exam)

Test on b)

- $f(0)=3$-> correct
- $\quad f(1)=5$-> correct
- $f(2)=17$-> correct

Test on d)

- $f(0)=3$-> correct
- $f(1)=6->$ this is wrong

Which of the following is true?

(a) for all $n \geq 0$: $f(n)=5 n^{2}-3 n+2$
(b) for all $n \geq 0: f(n)=5 n^{2}-3 n+3$
(c) for all $n \geq 0$: $f(n)=5 n^{2}+3 n+3$
(d) for all $n \geq 0$: $f(n)=5 n^{2}-2 n+3$

Test on a)

- $f(0)=2$-> this is wrong
- $f(1)=11$-> this is wrong

Base case:

- $f(0)=3$
- $f(1)=f(0)+10(0)+2=5$
- $f(2)=f(1)+10(1)+2=17$
- $f(3)=f(2)+10(2)+2=39$
- $f(4)=f(3)+10(3)+2=71$

Therefore, answer b) is correct by process of elimination

Good luck on your exams!

Resources:

Past assignments:

- https://cglab.ca/~michiel/2804/oldassignments/oldassignments.html

Past Midterms and Exams:

- https://cglab.ca/~michiel/2804/oldmidterms/oldmidterms.html
- https://cglab.ca/~michiel/2804/oldexams/oldexams.html
- https://cglab.ca/~morin/teaching/2804/oldexams.html

Interactive Version of Midterms and Exams (some of the questions won't load and/or might be incorrect):

- https://discretemath.cal

Explanations + Solutions to Winter 2017 Exam (Unofficial):

- https://docs.google.com/document/d/12Lmtq5u58Cdn-R8WAo4y80owk6V2n72v-k8np GYDIfY/edit?usp=sharing

